Homoclinic orbits for second order Hamiltonian systems with asymptotically linear terms at infinity

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Homoclinic Solutions for a Second-Order Nonperiodic Asymptotically Linear Hamiltonian Systems

and Applied Analysis 3 Note that the inequality (14) holds true with constantC = √ 2 if T ≥ 1/2 (see [9]). Subsequently, we may assume this condition is fulfilled. Consider a functional I : E T → R defined by

متن کامل

Homoclinic orbits for first order Hamiltonian systems with convex potentials

In this paper new estimates on the C-norm of homoclinic orbit are shown for first order convex Hamiltonian systems possessing super-quadratic potentials. Applying these estimates, some new results on the existence of infinitely many geometrically distinct homoclinic orbits are proved, which generalize the main results in [2] and [8].

متن کامل

Existence and Multiplicity of Homoclinic Orbits for Second-Order Hamiltonian Systems with Superquadratic Potential

and Applied Analysis 3 Theorem 3. Assume that L satisfies (L) and (L) and W satisfies (W1), (W4), (W8) and (W9). Then problem (1) possesses a nontrivial homoclinic orbit. Remark 4. In Theorem 3, we consider the existence of homoclinic orbits for problem (1) under a class of local superquadratic conditions without the (AR) condition and any periodicity assumptions on both L and W. There are func...

متن کامل

Existence of Homoclinic Orbits for Second Order Hamiltonian Systems without (ar) Condition

The existence of homoclinic orbits is obtained for a class of the second order Hamiltonian systems ü(t)−L(t)u(t)+∇W (t,u(t)) = 0, ∀t ∈ R , by the mountain pass theorem, where W(t,x) needs not to satisfy the global (AR) condition. Mathematics subject classification (2000): 34C37, 37J45, 47J30, 58E05.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Difference Equations

سال: 2014

ISSN: 1687-1847

DOI: 10.1186/1687-1847-2014-114